All functions

af.softmax()

An Activation Function: Softmax

CD()

the Comparison Data (CD) Approach

CDF()

the Comparison Data Forest (CDF) Approach

data.bfi

25 Personality Items Representing 5 Factors

data.datasets

Subset Dataset for Training the Pre-Trained Deep Neural Network (DNN)

data.scaler

the Scaler for the Pre-Trained Deep Neural Network (DNN)

DNN_predictor()

A Pre-Trained Deep Neural Network (DNN) for Determining the Number of Factors

EFAhclust()

Hierarchical Clustering for EFA

EFAindex()

Various Indeces in EFA

EFAkmeans()

K-means for EFA

EFAscreet()

Scree Plot

EFAsim.data()

Simulate Data that Conforms to the theory of Exploratory Factor Analysis.

EFAvote()

Voting Method for Number of Factors in EFA

EKC()

Empirical Kaiser Criterion

extractor.feature.DNN()

Extracting features for the Pre-Trained Deep Neural Network (DNN)

extractor.feature.FF()

Extracting features According to Goretzko & Buhner (2020)

factor.analysis()

Factor Analysis by Principal Axis Factoring

FF()

Factor Forest (FF) Powered by An Tuned XGBoost Model for Determining the Number of Factors

GenData()

Simulating Data Following John Ruscio's RGenData

Hull()

the Hull Approach

KGC()

Kaiser-Guttman Criterion

load_DNN()

Load the Trained Deep Neural Network (DNN)

load_scaler()

Load the Scaler for the Pre-Trained Deep Neural Network (DNN)

load_xgb()

Load the Tuned XGBoost Model

model.xgb

the Tuned XGBoost Model for Determining the Number of Facotrs

normalizor()

Feature Normalization

PA()

Parallel Analysis

plot(<CD>)

Plot Comparison Data for Factor Analysis

plot(<CDF>)

Plot Comparison Data Forest (CDF) Classification Probability Distribution

plot(<DNN_predictor>)

Plot DNN Predictor Classification Probability Distribution

plot(<EFAhclust>)

Plot Hierarchical Cluster Analysis Dendrogram

plot(<EFAkmeans>)

Plot EFA K-means Clustering Results

plot(<EFAscreet>)

Plots the Scree Plot

plot(<EFAvote>)

Plot Voting Results for Number of Factors

plot(<EKC>)

Plot Empirical Kaiser Criterion (EKC) Plot

plot(<FF>)

Plot Factor Forest (FF) Classification Probability Distribution

plot(<Hull>)

Plot Hull Plot for Factor Analysis

plot(<KGC>)

Plot Kaiser-Guttman Criterion (KGC) Plot

plot(<PA>)

Plot Parallel Analysis Scree Plot

predictLearner(<classif.xgboost.earlystop>)

Prediction Function for the Tuned XGBoost Model with Early Stopping

print(<CD>)

Print Comparison Data Method Results

print(<CDF>)

Print Comparison Data Forest (CDF) Results

print(<DNN_predictor>)

Print DNN Predictor Method Results

print(<EFAdata>)

Print the EFAsim.data

print(<EFAhclust>)

Print EFAhclust Method Results

print(<EFAkmeans>)

Print EFAkmeans Method Results

print(<EFAscreet>)

Print the Scree Plot

print(<EFAvote>)

Print Voting Method Results

print(<EKC>)

Print Empirical Kaiser Criterion Results

print(<FF>)

Print Factor Forest (FF) Results

print(<Hull>)

Print Hull Method Results

print(<KGC>)

Print Kaiser-Guttman Criterion Results

print(<PA>)

Print Parallel Analysis Method Results