extractor.feature.FF.Rd
This function will extract 181 features from the data according to the method by Goretzko & Buhner (2020).
extractor.feature.FF(
response,
cor.type = "pearson",
use = "pairwise.complete.obs"
)
A required N
× I
matrix or data.frame consisting of the responses of N
individuals
to I
items.
A character string indicating which correlation coefficient (or covariance) is to be computed. One of "pearson" (default), "kendall", or "spearman". @seealso cor.
An optional character string giving a method for computing covariances in the presence of missing values. This must be one of the strings "everything", "all.obs", "complete.obs", "na.or.complete", or "pairwise.complete.obs" (default). @seealso cor.
A matrix (1×181) containing all the 181 features (Goretzko & Buhner, 2020).
The code for the extractor.feature.FF
function is implemented based on the publicly available code by Goretzko & Buhner (2020) (https://osf.io/mvrau/).
The extracted features are completely consistent with the 181 features described in the original text by Goretzko & Buhner (2020).
These features include:
1.
- Number of examinees
2.
- Number of items
3.
- Number of eigenvalues greater than 1
4.
- Proportion of variance explained by the 1st eigenvalue
5.
- Proportion of variance explained by the 2nd eigenvalue
6.
- Proportion of variance explained by the 3rd eigenvalue
7.
- Number of eigenvalues greater than 0.7
8.
- Standard deviation of the eigenvalues
9.
- Number of eigenvalues accounting for 50
10.
- Number of eigenvalues accounting for 75
11.
- L1-norm of the correlation matrix
12.
- Frobenius-norm of the correlation matrix
13.
- Maximum-norm of the correlation matrix
14.
- Average of the off-diagonal correlations
15.
- Spectral-norm of the correlation matrix
16.
- Number of correlations smaller or equal to 0.1
17.
- Average of the initial communality estimates
18.
- Determinant of the correlation matrix
19.
- Measure of sampling adequacy (MSA after Kaiser, 1970)
20.
- Gini coefficient (Gini, 1921) of the correlation matrix
21.
- Kolm measure of inequality (Kolm, 1999) of the correlation matrix
22-101.
- Eigenvalues from Principal Component Analysis (PCA), padded with -1000 if insufficient
102-181.
- Eigenvalues from Factor Analysis (FA), fixed at 1 factor, padded with -1000 if insufficient
Goretzko, D., & Buhner, M. (2020). One model to rule them all? Using machine learning algorithms to determine the number of factors in exploratory factor analysis. Psychol Methods, 25(6), 776-786. https://doi.org/10.1037/met0000262.
library(EFAfactors)
set.seed(123)
##Take the data.bfi dataset as an example.
data(data.bfi)
response <- as.matrix(data.bfi[, 1:25]) ## loading data
response <- na.omit(response) ## Remove samples with NA/missing values
## Transform the scores of reverse-scored items to normal scoring
response[, c(1, 9, 10, 11, 12, 22, 25)] <- 6 - response[, c(1, 9, 10, 11, 12, 22, 25)] + 1
## Run extractor.feature.FF function with default parameters.
# \donttest{
features <- extractor.feature.FF(response)
print(features)
#> N I eiggreater1 releig1 releig2 releig3 eiggreater07 sdeigval var50
#> 1 2436 25 6 0.2053724 0.3154479 0.401156 9 1.055289 5
#> var75 onenorm frobnorm maxnorm avgcor specnorm smlcor avgcom
#> 1 12 6.597807 7.192164 0.7182598 0.166283 5.134311 326 0.3626741
#> det KMO Gini Kolm eigval1 eigval2 eigval3 eigval4
#> 1 0.0005640639 0.8486452 0.52 0.1184304 5.134311 2.751887 2.142702 1.852328
#> eigval5 eigval6 eigval7 eigval8 eigval9 eigval10 eigval11 eigval12
#> 1 1.548163 1.073582 0.8395389 0.7992062 0.7189892 0.6880888 0.6763734 0.6517998
#> eigval13 eigval14 eigval15 eigval16 eigval17 eigval18 eigval19 eigval20
#> 1 0.623253 0.5965628 0.5630908 0.5433053 0.5145175 0.4945031 0.4826395 0.448921
#> eigval21 eigval22 eigval23 eigval24 eigval25 eigval26 eigval27 eigval28
#> 1 0.4233661 0.4006715 0.3878045 0.3818568 0.262539 -1000 -1000 -1000
#> eigval29 eigval30 eigval31 eigval32 eigval33 eigval34 eigval35 eigval36
#> 1 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
#> eigval37 eigval38 eigval39 eigval40 eigval41 eigval42 eigval43 eigval44
#> 1 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
#> eigval45 eigval46 eigval47 eigval48 eigval49 eigval50 eigval51 eigval52
#> 1 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
#> eigval53 eigval54 eigval55 eigval56 eigval57 eigval58 eigval59 eigval60
#> 1 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
#> eigval61 eigval62 eigval63 eigval64 eigval65 eigval66 eigval67 eigval68
#> 1 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
#> eigval69 eigval70 eigval71 eigval72 eigval73 eigval74 eigval75 eigval76
#> 1 -1000 -1000 -1000 -1000 -1000 -1000 -1000 -1000
#> eigval77 eigval78 eigval79 eigval80 fa_eigval1 fa_eigval2 fa_eigval3
#> 1 -1000 -1000 -1000 -1000 4.364152 1.921595 1.305208
#> fa_eigval4 fa_eigval5 fa_eigval6 fa_eigval7 fa_eigval8 fa_eigval9
#> 1 0.9707252 0.7246551 0.2227041 0.0009696356 -0.0250934 -0.1108051
#> fa_eigval10 fa_eigval11 fa_eigval12 fa_eigval13 fa_eigval14 fa_eigval15
#> 1 -0.134687 -0.1619359 -0.2056736 -0.2254103 -0.2383512 -0.2603974
#> fa_eigval16 fa_eigval17 fa_eigval18 fa_eigval19 fa_eigval20 fa_eigval21
#> 1 -0.2775633 -0.3024934 -0.312759 -0.3247359 -0.3450822 -0.3720205
#> fa_eigval22 fa_eigval23 fa_eigval24 fa_eigval25 fa_eigval26 fa_eigval27
#> 1 -0.3801292 -0.4332142 -0.4490801 -0.5862909 -1000 -1000
#> fa_eigval28 fa_eigval29 fa_eigval30 fa_eigval31 fa_eigval32 fa_eigval33
#> 1 -1000 -1000 -1000 -1000 -1000 -1000
#> fa_eigval34 fa_eigval35 fa_eigval36 fa_eigval37 fa_eigval38 fa_eigval39
#> 1 -1000 -1000 -1000 -1000 -1000 -1000
#> fa_eigval40 fa_eigval41 fa_eigval42 fa_eigval43 fa_eigval44 fa_eigval45
#> 1 -1000 -1000 -1000 -1000 -1000 -1000
#> fa_eigval46 fa_eigval47 fa_eigval48 fa_eigval49 fa_eigval50 fa_eigval51
#> 1 -1000 -1000 -1000 -1000 -1000 -1000
#> fa_eigval52 fa_eigval53 fa_eigval54 fa_eigval55 fa_eigval56 fa_eigval57
#> 1 -1000 -1000 -1000 -1000 -1000 -1000
#> fa_eigval58 fa_eigval59 fa_eigval60 fa_eigval61 fa_eigval62 fa_eigval63
#> 1 -1000 -1000 -1000 -1000 -1000 -1000
#> fa_eigval64 fa_eigval65 fa_eigval66 fa_eigval67 fa_eigval68 fa_eigval69
#> 1 -1000 -1000 -1000 -1000 -1000 -1000
#> fa_eigval70 fa_eigval71 fa_eigval72 fa_eigval73 fa_eigval74 fa_eigval75
#> 1 -1000 -1000 -1000 -1000 -1000 -1000
#> fa_eigval76 fa_eigval77 fa_eigval78 fa_eigval79 fa_eigval80
#> 1 -1000 -1000 -1000 -1000 -1000
# }