A unified extractor function for retrieving internal components from objects produced by the Qval package. This method allows users to access key elements such as model results, validation logs, and simulation settings in a structured and object-oriented manner.

extract(object, what, ...)

# S3 method for class 'CDM'
extract(object, what, ...)

# S3 method for class 'validation'
extract(object, what, ...)

# S3 method for class 'sim.data'
extract(object, what, ...)

# S3 method for class 'fit'
extract(object, what, ...)

# S3 method for class 'is.Qident'
extract(object, what, ...)

# S3 method for class 'att.hierarchy'
extract(object, what, ...)

Arguments

object

An object of class CDM, validation, sim.data, fit, is.Qident, att.hierarchy.

what

A character string specifying the name of the component to extract.

...

Additional arguments (currently ignored).

Value

The requested component. The return type depends on the specified what and the class of the object.

Details

This generic extractor supports three core object classes: CDM, validation, sim.data, fit, is.Qident, att.hierarchy. It is intended to streamline access to commonly used internal components without manually referencing object slots. The available components for each class are listed below:

CDM

Cognitive Diagnosis Model fitting results. Available components:

analysis.obj

The internal model fitting object (e.g., GDINA or Baseline Model).

alpha

Estimated attribute profiles (EAP estimates) for each respondent.

P.alpha.Xi

Posterior distribution of latent attribute patterns.

alpha.P

Marginal attribute mastery probabilities (estimated).

P.alpha

Prior attribute probabilities at convergence.

pattern

The attribute mastery pattern matrix containing all possible attribute mastery pattern.

Deviance

Negative twice the marginal log-likelihood (model deviance).

npar

Number of free parameters estimated in the model.

AIC

Akaike Information Criterion.

BIC

Bayesian Information Criterion.

call

The original model-fitting function call.

...

Can extract corresponding value from the GDINA object.

validation

Q-matrix validation results. Available components:

Q.orig

The original Q-matrix submitted for validation.

Q.sug

The suggested (revised) Q-matrix after validation.

time.cost

Total computation time for the validation procedure.

process

Log of Q-matrix modifications across iterations.

iter

Number of iterations performed during validation.

priority

Attribute priority matrix (available for PAA-based methods only).

Hull.fit

Data required to plot the Hull method results (for Hull-based validation only).

call

The original function call used for validation.

sim.data

Simulated data and parameters used in cognitive diagnosis simulation studies:

dat

Simulated dichotomous response matrix (\(N \times I\)).

Q

Q-matrix used to generate the data.

attribute

True latent attribute profiles (\(N \times K\)).

catprob.parm

Item-category conditional success probabilities (list format).

delta.parm

Item-level delta parameters (list format).

higher.order.parm

Higher-order model parameters (if used).

mvnorm.parm

Parameters for the multivariate normal attribute distribution (if used).

LCprob.parm

Latent class-based success probability matrix.

call

The original function call that generated the simulated data.

fit

Relative fit indices (-2LL, AIC, BIC, CAIC, SABIC) and absolute fit indices (\(M_2\) test, \(RMSEA_2\), SRMSR):

npar

The number of parameters.

-2LL

The Deviance.

AIC

The Akaike information criterion.

BIC

The Bayesian information criterion.

CAIC

The consistent Akaike information criterion.

SABIC

The Sample-size Adjusted BIC.

M2

A vector consisting of \(M_2\) statistic, degrees of freedom, significance level, and \(RMSEA_2\) (Liu, Tian, & Xin, 2016).

SRMSR

The standardized root mean squared residual (SRMSR; Ravand & Robitzsch, 2018).

is.Qident

Results of whether the Q-matrix is identifiable:

completeness

TRUE if \(K \times K\) identity submatrix exists.

distinctness

TRUE if remaining columns are distinct.

repetition

TRUE if every attribute appears more than 3 items.

genericCompleteness

TRUE if two different generic complete \(K \times K\) submatrices exist.

genericRepetition

TRUE if at least one '1' exists outside those submatrices.

Q1, Q2

Identified generic complete submatrices (if found).

Q.star

Remaining part after removing rows in Q1 and Q2.

locallyGenericIdentifiability

TRUE if local generic identifiability holds.

globallyGenericIdentifiability

TRUE if global generic identifiability holds.

Q.reconstructed.DINA

Reconstructed Q-matrix with low-frequency attribute moved to first column.

att.hierarchy

Results of iterative attribute hierarchy exploration:

noSig

TRUE all structural parameters are not greater than 0.

isNonverge

TRUE if convergence was achieved.

statistic

A 4-column data.frame results for each structural parameter that is significantly larger than 0.

pattern

The attribute pattern matrix under iterative attribute hierarchy.

Methods (by class)

  • extract(CDM): Extract fields from a CDM object

  • extract(validation): Extract fields from a validation object

  • extract(sim.data): Extract fields from a sim.data object

  • extract(fit): Extract fields from a fit object

  • extract(is.Qident): Extract fields from a is.Qident object

  • extract(att.hierarchy): Extract fields from a att.hierarchy object

References

Khaldi, R., Chiheb, R., & Afa, A.E. (2018). Feed-forward and Recurrent Neural Networks for Time Series Forecasting: Comparative Study. In: Proceedings of the International Conference on Learning and Optimization Algorithms: Theory and Applications (LOPAL 18). Association for Computing Machinery, New York, NY, USA, Article 18, 1–6. DOI: 10.1145/3230905.3230946.

Liu, Y., Tian, W., & Xin, T. (2016). An application of M2 statistic to evaluate the fit of cognitive diagnostic models. Journal of Educational and Behavioral Statistics, 41, 3–26. DOI: 10.3102/1076998615621293.

Ravand, H., & Robitzsch, A. (2018). Cognitive diagnostic model of best choice: a study of reading comprehension. Educational Psychology, 38, 1255–1277. DOI: 10.1080/01443410.2018.1489524.

Examples

library(Qval)
set.seed(123)

# \donttest{
################################################################
# Example 1: sim.data extraction                               #
################################################################
Q <- sim.Q(3, 10)
data.obj <- sim.data(Q, N = 200)
#> distribute =  uniform 
#> model =  GDINA 
#>  number of attributes:  3 
#>  number of items:  10 
#>  num of examinees:  200 
#>  average of P0 =  0.174 
#>  average of P1 =  0.889 
extract(data.obj, "dat")
#>        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#>   [1,]    1    1    0    1    1    0    0    1    0     0
#>   [2,]    0    1    0    0    0    1    1    0    1     1
#>   [3,]    1    1    1    0    0    1    0    1    1     0
#>   [4,]    0    1    1    0    0    1    1    1    1     1
#>   [5,]    0    1    1    0    0    1    0    1    1     0
#>   [6,]    1    1    1    1    1    0    1    1    1     1
#>   [7,]    1    0    0    0    1    1    1    1    0     1
#>   [8,]    0    0    1    0    0    1    0    0    0     0
#>   [9,]    0    1    0    0    0    0    1    1    0     1
#>  [10,]    0    1    1    0    0    0    1    0    0     1
#>  [11,]    0    0    1    0    0    1    1    0    1     1
#>  [12,]    1    1    1    1    1    1    1    1    1     1
#>  [13,]    1    1    0    0    1    1    0    1    1     0
#>  [14,]    0    1    1    1    1    1    1    1    1     0
#>  [15,]    0    1    1    0    1    0    1    0    1     1
#>  [16,]    0    1    0    0    0    1    1    0    0     1
#>  [17,]    0    1    0    0    0    0    0    0    0     0
#>  [18,]    0    0    0    0    0    0    1    0    0     1
#>  [19,]    1    1    1    0    0    1    0    0    1     0
#>  [20,]    0    0    0    0    0    0    0    0    0     0
#>  [21,]    1    1    1    1    0    1    1    1    0     1
#>  [22,]    1    0    1    0    0    0    1    0    1     1
#>  [23,]    1    1    1    1    0    1    0    1    1     0
#>  [24,]    0    0    0    0    0    0    0    0    0     0
#>  [25,]    1    1    1    1    1    0    0    1    1     0
#>  [26,]    0    0    0    0    0    0    1    0    0     1
#>  [27,]    0    1    0    1    1    0    0    1    0     0
#>  [28,]    1    1    1    1    1    0    0    1    1     0
#>  [29,]    1    1    1    0    1    1    1    1    0     0
#>  [30,]    1    1    0    0    1    0    0    1    0     1
#>  [31,]    1    1    0    1    1    1    1    1    0     1
#>  [32,]    1    0    0    0    1    0    1    1    1     1
#>  [33,]    0    1    1    0    0    0    0    0    1     0
#>  [34,]    1    1    0    1    1    0    1    1    1     1
#>  [35,]    1    0    0    0    1    0    0    1    1     1
#>  [36,]    1    1    0    0    1    1    1    1    0     1
#>  [37,]    1    1    1    1    1    0    0    1    1     0
#>  [38,]    1    1    1    1    1    1    0    1    1     0
#>  [39,]    1    1    1    1    0    1    1    1    1     1
#>  [40,]    0    0    0    0    0    0    0    0    0     0
#>  [41,]    1    0    1    0    0    0    1    1    0     1
#>  [42,]    0    1    0    0    1    0    1    1    0     1
#>  [43,]    0    0    0    0    0    1    0    0    0     1
#>  [44,]    0    0    0    0    0    0    1    0    0     1
#>  [45,]    1    1    0    0    1    0    0    1    0     0
#>  [46,]    0    0    1    0    0    1    1    0    1     1
#>  [47,]    0    1    1    1    0    0    0    0    1     0
#>  [48,]    1    1    0    0    1    0    1    1    0     1
#>  [49,]    1    1    1    1    1    0    0    1    1     0
#>  [50,]    0    0    1    0    0    0    0    1    1     1
#>  [51,]    0    0    0    0    0    1    0    0    0     0
#>  [52,]    1    1    0    0    1    0    0    1    0     0
#>  [53,]    1    1    1    0    1    0    1    1    1     1
#>  [54,]    0    1    0    0    0    0    1    0    0     0
#>  [55,]    1    1    1    1    0    1    1    1    1     1
#>  [56,]    1    1    0    0    1    0    1    1    0     1
#>  [57,]    0    0    0    0    0    1    0    1    0     1
#>  [58,]    1    1    1    0    0    1    0    1    1     1
#>  [59,]    0    0    1    0    0    0    0    0    1     0
#>  [60,]    1    1    1    1    1    1    1    1    1     1
#>  [61,]    1    1    1    1    1    1    1    1    1     1
#>  [62,]    1    1    0    1    0    1    1    1    0     1
#>  [63,]    1    0    0    0    1    0    0    1    0     1
#>  [64,]    1    1    1    1    1    1    1    1    1     0
#>  [65,]    0    0    0    0    0    0    0    0    0     0
#>  [66,]    1    1    0    0    1    1    1    0    1     1
#>  [67,]    1    1    1    0    1    0    1    1    1     1
#>  [68,]    1    1    1    1    0    1    1    1    1     1
#>  [69,]    0    1    0    0    0    0    0    0    1     0
#>  [70,]    1    0    0    1    1    1    1    1    1     1
#>  [71,]    0    1    1    0    0    0    1    0    1     1
#>  [72,]    1    1    1    1    1    1    1    1    1     1
#>  [73,]    1    1    1    1    1    0    0    1    0     1
#>  [74,]    0    1    0    0    0    1    0    1    1     1
#>  [75,]    1    1    1    1    1    0    0    1    1     0
#>  [76,]    1    1    0    0    1    1    1    1    0     1
#>  [77,]    0    0    0    0    0    0    1    1    0     1
#>  [78,]    1    1    1    1    1    1    0    1    1     0
#>  [79,]    0    0    1    0    0    1    1    0    1     1
#>  [80,]    0    1    1    0    0    0    1    1    0     1
#>  [81,]    1    0    1    0    1    1    1    0    1     1
#>  [82,]    0    0    0    0    0    1    0    0    1     0
#>  [83,]    0    0    0    0    0    0    1    1    1     1
#>  [84,]    0    0    0    0    0    0    1    0    1     1
#>  [85,]    0    1    0    0    0    1    1    0    1     1
#>  [86,]    1    1    0    1    1    1    1    1    1     0
#>  [87,]    0    0    0    0    0    0    1    0    0     1
#>  [88,]    0    0    0    0    0    0    1    0    0     1
#>  [89,]    1    1    0    0    1    0    1    0    0     0
#>  [90,]    0    1    1    1    1    1    0    1    1     0
#>  [91,]    1    0    0    0    0    1    1    1    0     0
#>  [92,]    1    1    0    0    1    0    0    0    0     1
#>  [93,]    1    0    1    0    1    1    1    1    1     1
#>  [94,]    0    0    0    0    0    1    0    1    0     1
#>  [95,]    1    1    0    1    1    0    1    1    1     1
#>  [96,]    1    0    0    1    1    0    1    1    0     1
#>  [97,]    0    1    0    0    1    1    1    1    1     1
#>  [98,]    0    0    1    0    0    0    0    0    1     0
#>  [99,]    1    1    1    1    1    1    1    1    1     1
#> [100,]    1    1    0    1    1    0    1    1    0     1
#> [101,]    0    1    1    0    0    1    0    0    1     0
#> [102,]    0    1    0    1    1    1    1    1    0     0
#> [103,]    1    1    1    0    1    1    0    1    1     0
#> [104,]    1    1    1    1    0    1    1    1    1     1
#> [105,]    0    0    0    0    0    1    0    0    0     0
#> [106,]    0    1    1    0    1    1    0    1    1     0
#> [107,]    0    0    1    0    1    1    0    0    1     0
#> [108,]    1    1    0    1    0    0    0    1    1     0
#> [109,]    0    1    1    0    0    1    1    0    1     1
#> [110,]    1    1    1    1    1    1    0    1    1     0
#> [111,]    1    1    1    1    1    0    0    1    0     0
#> [112,]    0    0    0    0    0    1    1    1    0     1
#> [113,]    0    1    0    0    1    0    1    1    1     1
#> [114,]    1    1    0    1    1    1    1    1    0     1
#> [115,]    1    1    1    0    1    1    0    1    1     0
#> [116,]    1    1    1    1    1    1    1    0    1     0
#> [117,]    1    1    1    1    1    1    1    1    1     1
#> [118,]    1    0    1    1    0    0    0    1    1     0
#> [119,]    0    0    0    0    0    1    1    0    0     1
#> [120,]    0    0    1    0    0    1    1    0    1     1
#> [121,]    1    1    0    0    1    1    1    1    0     1
#> [122,]    1    1    1    1    1    1    1    1    1     1
#> [123,]    1    1    1    1    1    1    1    1    1     1
#> [124,]    1    1    1    1    0    1    1    1    1     1
#> [125,]    0    0    1    0    0    0    1    1    1     1
#> [126,]    0    1    1    1    1    0    0    1    1     1
#> [127,]    0    1    1    0    0    1    1    1    1     0
#> [128,]    1    1    0    1    1    0    0    1    0     0
#> [129,]    1    1    0    1    1    1    1    1    0     1
#> [130,]    0    1    0    0    1    0    1    1    1     1
#> [131,]    1    0    0    0    1    0    0    1    0     0
#> [132,]    0    0    1    0    0    1    1    1    1     1
#> [133,]    0    0    1    0    0    0    1    0    1     1
#> [134,]    0    0    0    0    0    1    1    0    0     0
#> [135,]    1    0    1    0    0    0    0    1    1     0
#> [136,]    0    1    0    0    1    1    1    1    1     1
#> [137,]    0    1    0    0    0    1    1    0    0     1
#> [138,]    0    0    1    0    0    0    0    0    0     0
#> [139,]    1    0    1    1    1    1    0    1    1     1
#> [140,]    0    0    0    0    0    1    1    0    0     1
#> [141,]    0    1    0    1    1    0    1    1    1     1
#> [142,]    0    1    1    0    0    0    1    1    1     1
#> [143,]    0    0    1    0    0    1    0    0    1     0
#> [144,]    1    1    1    1    1    1    1    1    1     1
#> [145,]    1    1    0    0    1    0    0    1    1     0
#> [146,]    1    0    1    1    1    0    1    1    1     0
#> [147,]    1    1    1    1    0    0    0    1    1     0
#> [148,]    1    1    0    0    1    0    1    0    0     0
#> [149,]    0    0    0    0    0    1    0    0    0     0
#> [150,]    0    1    1    1    1    1    1    1    1     1
#> [151,]    0    1    0    1    0    1    1    1    1     1
#> [152,]    1    1    0    0    0    1    1    1    1     1
#> [153,]    0    1    0    1    1    1    1    1    1     0
#> [154,]    0    0    1    0    0    0    0    0    0     1
#> [155,]    1    1    1    1    1    1    1    1    1     1
#> [156,]    1    1    0    1    0    0    1    1    1     1
#> [157,]    1    1    0    0    1    0    1    0    0     1
#> [158,]    0    0    1    0    0    0    1    0    1     0
#> [159,]    1    1    1    1    1    1    1    1    1     1
#> [160,]    1    1    0    0    1    0    0    1    0     1
#> [161,]    1    1    1    1    1    1    1    1    1     1
#> [162,]    0    1    1    0    0    0    0    0    1     0
#> [163,]    0    1    1    0    0    0    1    0    1     1
#> [164,]    1    0    0    0    1    1    0    1    0     1
#> [165,]    1    1    0    1    1    1    0    1    0     0
#> [166,]    1    0    0    0    0    0    0    1    1     1
#> [167,]    0    0    0    0    1    0    1    1    0     1
#> [168,]    0    0    0    0    0    0    0    0    0     0
#> [169,]    0    0    0    0    0    0    1    0    0     1
#> [170,]    1    1    1    0    0    1    1    1    1     0
#> [171,]    1    0    0    0    1    0    1    0    0     1
#> [172,]    0    0    1    0    0    0    1    1    1     0
#> [173,]    0    0    0    0    0    0    1    1    0     0
#> [174,]    1    1    0    1    0    0    0    1    1     1
#> [175,]    1    1    1    1    0    1    1    1    1     0
#> [176,]    1    1    0    1    1    1    1    0    0     1
#> [177,]    0    1    1    0    0    1    1    1    1     1
#> [178,]    0    0    1    0    0    0    1    0    1     1
#> [179,]    0    0    0    0    0    0    1    0    0     1
#> [180,]    0    1    1    0    0    1    0    0    1     1
#> [181,]    0    0    1    0    1    0    1    0    1     1
#> [182,]    1    0    0    0    1    1    1    1    0     1
#> [183,]    1    1    0    0    1    0    1    0    0     1
#> [184,]    0    0    0    0    0    0    0    0    0     0
#> [185,]    1    1    1    1    1    1    1    1    1     1
#> [186,]    1    1    0    0    1    0    0    1    0     0
#> [187,]    1    0    1    1    1    1    1    1    1     0
#> [188,]    0    0    0    0    0    0    1    0    0     1
#> [189,]    1    0    0    0    0    0    1    0    0     1
#> [190,]    0    1    1    0    0    0    1    0    1     0
#> [191,]    0    1    0    0    1    1    1    1    1     1
#> [192,]    1    1    0    0    1    0    1    1    1     1
#> [193,]    0    0    1    0    0    1    1    0    1     1
#> [194,]    1    1    1    1    1    1    1    1    1     0
#> [195,]    1    1    1    1    0    0    0    1    0     0
#> [196,]    0    1    1    1    0    0    1    1    1     1
#> [197,]    0    0    0    0    0    1    0    0    0     0
#> [198,]    1    1    1    1    1    1    1    1    1     1
#> [199,]    1    1    1    1    1    1    1    1    1     1
#> [200,]    0    0    0    0    0    1    1    0    0     1


################################################################
# Example 2: CDM extraction                                    #
################################################################
CDM.obj <- CDM(data.obj$dat, Q)
#> 
Iter = 1  Max. abs. change = 0.36945  Deviance  = 2399.11                                                                                  
Iter = 2  Max. abs. change = 0.08253  Deviance  = 2235.47                                                                                  
Iter = 3  Max. abs. change = 0.04375  Deviance  = 2220.28                                                                                  
Iter = 4  Max. abs. change = 0.02282  Deviance  = 2216.47                                                                                  
Iter = 5  Max. abs. change = 0.01113  Deviance  = 2215.10                                                                                  
Iter = 6  Max. abs. change = 0.01075  Deviance  = 2214.35                                                                                  
Iter = 7  Max. abs. change = 0.01064  Deviance  = 2213.79                                                                                  
Iter = 8  Max. abs. change = 0.01039  Deviance  = 2213.32                                                                                  
Iter = 9  Max. abs. change = 0.01000  Deviance  = 2212.90                                                                                  
Iter = 10  Max. abs. change = 0.00948  Deviance  = 2212.52                                                                                  
Iter = 11  Max. abs. change = 0.00888  Deviance  = 2212.17                                                                                  
Iter = 12  Max. abs. change = 0.00822  Deviance  = 2211.86                                                                                  
Iter = 13  Max. abs. change = 0.00754  Deviance  = 2211.58                                                                                  
Iter = 14  Max. abs. change = 0.00687  Deviance  = 2211.34                                                                                  
Iter = 15  Max. abs. change = 0.00624  Deviance  = 2211.12                                                                                  
Iter = 16  Max. abs. change = 0.00565  Deviance  = 2210.93                                                                                  
Iter = 17  Max. abs. change = 0.00512  Deviance  = 2210.77                                                                                  
Iter = 18  Max. abs. change = 0.00465  Deviance  = 2210.62                                                                                  
Iter = 19  Max. abs. change = 0.00423  Deviance  = 2210.50                                                                                  
Iter = 20  Max. abs. change = 0.00386  Deviance  = 2210.39                                                                                  
Iter = 21  Max. abs. change = 0.00353  Deviance  = 2210.29                                                                                  
Iter = 22  Max. abs. change = 0.00324  Deviance  = 2210.20                                                                                  
Iter = 23  Max. abs. change = 0.00298  Deviance  = 2210.12                                                                                  
Iter = 24  Max. abs. change = 0.00274  Deviance  = 2210.05                                                                                  
Iter = 25  Max. abs. change = 0.00253  Deviance  = 2209.98                                                                                  
Iter = 26  Max. abs. change = 0.00234  Deviance  = 2209.92                                                                                  
Iter = 27  Max. abs. change = 0.00217  Deviance  = 2209.87                                                                                  
Iter = 28  Max. abs. change = 0.00201  Deviance  = 2209.82                                                                                  
Iter = 29  Max. abs. change = 0.00186  Deviance  = 2209.77                                                                                  
Iter = 30  Max. abs. change = 0.00173  Deviance  = 2209.73                                                                                  
Iter = 31  Max. abs. change = 0.00161  Deviance  = 2209.69                                                                                  
Iter = 32  Max. abs. change = 0.00150  Deviance  = 2209.65                                                                                  
Iter = 33  Max. abs. change = 0.00140  Deviance  = 2209.62                                                                                  
Iter = 34  Max. abs. change = 0.00130  Deviance  = 2209.59                                                                                  
Iter = 35  Max. abs. change = 0.00121  Deviance  = 2209.56                                                                                  
Iter = 36  Max. abs. change = 0.00113  Deviance  = 2209.53                                                                                  
Iter = 37  Max. abs. change = 0.00106  Deviance  = 2209.51                                                                                  
Iter = 38  Max. abs. change = 0.00099  Deviance  = 2209.49                                                                                  
Iter = 39  Max. abs. change = 0.00092  Deviance  = 2209.47                                                                                  
Iter = 40  Max. abs. change = 0.00086  Deviance  = 2209.44                                                                                  
Iter = 41  Max. abs. change = 0.00081  Deviance  = 2209.43                                                                                  
Iter = 42  Max. abs. change = 0.00075  Deviance  = 2209.41                                                                                  
Iter = 43  Max. abs. change = 0.00070  Deviance  = 2209.39                                                                                  
Iter = 44  Max. abs. change = 0.00066  Deviance  = 2209.38                                                                                  
Iter = 45  Max. abs. change = 0.00061  Deviance  = 2209.36                                                                                  
Iter = 46  Max. abs. change = 0.00057  Deviance  = 2209.35                                                                                  
Iter = 47  Max. abs. change = 0.00054  Deviance  = 2209.34                                                                                  
Iter = 48  Max. abs. change = 0.00050  Deviance  = 2209.32                                                                                  
Iter = 49  Max. abs. change = 0.00047  Deviance  = 2209.31                                                                                  
Iter = 50  Max. abs. change = 0.00044  Deviance  = 2209.30                                                                                  
Iter = 51  Max. abs. change = 0.00041  Deviance  = 2209.29                                                                                  
Iter = 52  Max. abs. change = 0.00039  Deviance  = 2209.28                                                                                  
Iter = 53  Max. abs. change = 0.00036  Deviance  = 2209.28                                                                                  
Iter = 54  Max. abs. change = 0.00034  Deviance  = 2209.27                                                                                  
Iter = 55  Max. abs. change = 0.00032  Deviance  = 2209.26                                                                                  
Iter = 56  Max. abs. change = 0.00030  Deviance  = 2209.25                                                                                  
Iter = 57  Max. abs. change = 0.00028  Deviance  = 2209.25                                                                                  
Iter = 58  Max. abs. change = 0.00026  Deviance  = 2209.24                                                                                  
Iter = 59  Max. abs. change = 0.00024  Deviance  = 2209.24                                                                                  
Iter = 60  Max. abs. change = 0.00023  Deviance  = 2209.23                                                                                  
Iter = 61  Max. abs. change = 0.00021  Deviance  = 2209.23                                                                                  
Iter = 62  Max. abs. change = 0.00020  Deviance  = 2209.22                                                                                  
Iter = 63  Max. abs. change = 0.00019  Deviance  = 2209.22                                                                                  
Iter = 64  Max. abs. change = 0.00017  Deviance  = 2209.21                                                                                  
Iter = 65  Max. abs. change = 0.00016  Deviance  = 2209.21                                                                                  
Iter = 66  Max. abs. change = 0.00015  Deviance  = 2209.21                                                                                  
Iter = 67  Max. abs. change = 0.00014  Deviance  = 2209.20                                                                                  
Iter = 68  Max. abs. change = 0.00013  Deviance  = 2209.20                                                                                  
Iter = 69  Max. abs. change = 0.00013  Deviance  = 2209.20                                                                                  
Iter = 70  Max. abs. change = 0.00012  Deviance  = 2209.19                                                                                  
Iter = 71  Max. abs. change = 0.00011  Deviance  = 2209.19                                                                                  
Iter = 72  Max. abs. change = 0.00010  Deviance  = 2209.19                                                                                  
Iter = 73  Max. abs. change = 0.00010  Deviance  = 2209.19                                                                                  
extract(CDM.obj, "alpha")
#>        A1 A2 A3
#>   [1,]  0  0  1
#>   [2,]  1  1  0
#>   [3,]  0  1  1
#>   [4,]  1  1  0
#>   [5,]  0  1  0
#>   [6,]  1  1  1
#>   [7,]  1  0  1
#>   [8,]  0  0  0
#>   [9,]  1  0  0
#>  [10,]  1  1  0
#>  [11,]  1  1  0
#>  [12,]  1  1  1
#>  [13,]  0  1  1
#>  [14,]  1  1  1
#>  [15,]  1  1  0
#>  [16,]  1  0  0
#>  [17,]  0  0  0
#>  [18,]  1  0  0
#>  [19,]  0  1  0
#>  [20,]  0  0  0
#>  [21,]  1  1  1
#>  [22,]  1  1  0
#>  [23,]  0  1  1
#>  [24,]  0  0  0
#>  [25,]  0  1  1
#>  [26,]  1  0  0
#>  [27,]  0  0  1
#>  [28,]  0  1  1
#>  [29,]  1  0  1
#>  [30,]  0  0  1
#>  [31,]  1  0  1
#>  [32,]  1  0  1
#>  [33,]  0  1  0
#>  [34,]  1  0  1
#>  [35,]  0  0  1
#>  [36,]  1  0  1
#>  [37,]  0  1  1
#>  [38,]  0  1  1
#>  [39,]  1  1  1
#>  [40,]  0  0  0
#>  [41,]  1  0  1
#>  [42,]  1  0  1
#>  [43,]  0  0  0
#>  [44,]  1  0  0
#>  [45,]  0  0  1
#>  [46,]  1  1  0
#>  [47,]  0  1  0
#>  [48,]  1  0  1
#>  [49,]  0  1  1
#>  [50,]  0  1  0
#>  [51,]  0  0  0
#>  [52,]  0  0  1
#>  [53,]  1  1  1
#>  [54,]  1  0  0
#>  [55,]  1  1  1
#>  [56,]  1  0  1
#>  [57,]  0  0  0
#>  [58,]  0  1  1
#>  [59,]  0  1  0
#>  [60,]  1  1  1
#>  [61,]  1  1  1
#>  [62,]  1  0  1
#>  [63,]  0  0  1
#>  [64,]  1  1  1
#>  [65,]  0  0  0
#>  [66,]  1  0  1
#>  [67,]  1  1  1
#>  [68,]  1  1  1
#>  [69,]  0  1  0
#>  [70,]  1  1  1
#>  [71,]  1  1  0
#>  [72,]  1  1  1
#>  [73,]  0  1  1
#>  [74,]  0  1  0
#>  [75,]  0  1  1
#>  [76,]  1  0  1
#>  [77,]  1  0  0
#>  [78,]  0  1  1
#>  [79,]  1  1  0
#>  [80,]  1  1  0
#>  [81,]  1  1  0
#>  [82,]  0  0  0
#>  [83,]  1  0  0
#>  [84,]  1  0  0
#>  [85,]  1  1  0
#>  [86,]  1  1  1
#>  [87,]  1  0  0
#>  [88,]  1  0  0
#>  [89,]  1  0  1
#>  [90,]  0  1  1
#>  [91,]  1  0  1
#>  [92,]  0  0  1
#>  [93,]  1  1  1
#>  [94,]  0  0  0
#>  [95,]  1  0  1
#>  [96,]  1  0  1
#>  [97,]  1  0  1
#>  [98,]  0  1  0
#>  [99,]  1  1  1
#> [100,]  1  0  1
#> [101,]  0  1  0
#> [102,]  1  0  1
#> [103,]  0  1  1
#> [104,]  1  1  1
#> [105,]  0  0  0
#> [106,]  0  1  1
#> [107,]  0  1  0
#> [108,]  0  1  1
#> [109,]  1  1  0
#> [110,]  0  1  1
#> [111,]  0  1  1
#> [112,]  1  0  0
#> [113,]  1  0  1
#> [114,]  1  0  1
#> [115,]  0  1  1
#> [116,]  1  1  1
#> [117,]  1  1  1
#> [118,]  0  1  1
#> [119,]  1  0  0
#> [120,]  1  1  0
#> [121,]  1  0  1
#> [122,]  1  1  1
#> [123,]  1  1  1
#> [124,]  1  1  1
#> [125,]  1  1  0
#> [126,]  0  1  1
#> [127,]  1  1  0
#> [128,]  0  0  1
#> [129,]  1  0  1
#> [130,]  1  0  1
#> [131,]  0  0  1
#> [132,]  1  1  0
#> [133,]  1  1  0
#> [134,]  1  0  0
#> [135,]  0  1  0
#> [136,]  1  0  1
#> [137,]  1  0  0
#> [138,]  0  0  0
#> [139,]  0  1  1
#> [140,]  1  0  0
#> [141,]  1  0  1
#> [142,]  1  1  0
#> [143,]  0  1  0
#> [144,]  1  1  1
#> [145,]  0  0  1
#> [146,]  1  1  1
#> [147,]  0  1  1
#> [148,]  1  0  1
#> [149,]  0  0  0
#> [150,]  1  1  1
#> [151,]  1  1  1
#> [152,]  1  0  1
#> [153,]  1  1  1
#> [154,]  0  0  0
#> [155,]  1  1  1
#> [156,]  1  0  1
#> [157,]  1  0  1
#> [158,]  1  1  0
#> [159,]  1  1  1
#> [160,]  0  0  1
#> [161,]  1  1  1
#> [162,]  0  1  0
#> [163,]  1  1  0
#> [164,]  0  0  1
#> [165,]  0  0  1
#> [166,]  0  0  1
#> [167,]  1  0  1
#> [168,]  0  0  0
#> [169,]  1  0  0
#> [170,]  1  1  1
#> [171,]  1  0  1
#> [172,]  1  1  0
#> [173,]  1  0  0
#> [174,]  0  1  1
#> [175,]  1  1  1
#> [176,]  1  0  1
#> [177,]  1  1  0
#> [178,]  1  1  0
#> [179,]  1  0  0
#> [180,]  0  1  0
#> [181,]  1  1  0
#> [182,]  1  0  1
#> [183,]  1  0  1
#> [184,]  0  0  0
#> [185,]  1  1  1
#> [186,]  0  0  1
#> [187,]  1  1  1
#> [188,]  1  0  0
#> [189,]  1  0  0
#> [190,]  1  1  0
#> [191,]  1  0  1
#> [192,]  1  0  1
#> [193,]  1  1  0
#> [194,]  1  1  1
#> [195,]  0  1  1
#> [196,]  1  1  1
#> [197,]  0  0  0
#> [198,]  1  1  1
#> [199,]  1  1  1
#> [200,]  1  0  0
extract(CDM.obj, "AIC")
#>      AIC 
#> 2295.184 


################################################################
# Example 3: validation extraction                             #
################################################################
validation.obj <- validation(data.obj$dat, Q, CDM.obj)
#> GDI  method with  PAA  in  test  level iteration ...
#> Iter  =  1/  1,   1 items have changed, ΔPVAF=0.02933 
Q.sug <- extract(validation.obj, "Q.sug")
print(Q.sug)
#>         A1 A2 A3
#> item 1   0  0  1
#> item 2   0  1  1
#> item 3   0  1  0
#> item 4   0  1  1
#> item 5   0  0  1
#> item 6   1  1  1
#> item 7   1  0  0
#> item 8   0  1  1
#> item 9   0  1  0
#> item 10  1  0  0


################################################################
# Example 4: fit extraction                                    #
################################################################
fit.obj <- fit(data.obj$dat, Q.sug, model="GDINA")
#> 
Iter = 1  Max. abs. change = 0.32132  Deviance  = 2386.78                                                                                  
Iter = 2  Max. abs. change = 0.08058  Deviance  = 2235.13                                                                                  
Iter = 3  Max. abs. change = 0.03608  Deviance  = 2222.28                                                                                  
Iter = 4  Max. abs. change = 0.01655  Deviance  = 2218.94                                                                                  
Iter = 5  Max. abs. change = 0.01094  Deviance  = 2217.54                                                                                  
Iter = 6  Max. abs. change = 0.01122  Deviance  = 2216.66                                                                                  
Iter = 7  Max. abs. change = 0.01145  Deviance  = 2215.96                                                                                  
Iter = 8  Max. abs. change = 0.01151  Deviance  = 2215.37                                                                                  
Iter = 9  Max. abs. change = 0.01136  Deviance  = 2214.84                                                                                  
Iter = 10  Max. abs. change = 0.01098  Deviance  = 2214.37                                                                                  
Iter = 11  Max. abs. change = 0.01042  Deviance  = 2213.94                                                                                  
Iter = 12  Max. abs. change = 0.00971  Deviance  = 2213.57                                                                                  
Iter = 13  Max. abs. change = 0.00893  Deviance  = 2213.25                                                                                  
Iter = 14  Max. abs. change = 0.00812  Deviance  = 2212.97                                                                                  
Iter = 15  Max. abs. change = 0.00732  Deviance  = 2212.74                                                                                  
Iter = 16  Max. abs. change = 0.00658  Deviance  = 2212.53                                                                                  
Iter = 17  Max. abs. change = 0.00589  Deviance  = 2212.36                                                                                  
Iter = 18  Max. abs. change = 0.00527  Deviance  = 2212.21                                                                                  
Iter = 19  Max. abs. change = 0.00472  Deviance  = 2212.09                                                                                  
Iter = 20  Max. abs. change = 0.00423  Deviance  = 2211.98                                                                                  
Iter = 21  Max. abs. change = 0.00379  Deviance  = 2211.89                                                                                  
Iter = 22  Max. abs. change = 0.00341  Deviance  = 2211.80                                                                                  
Iter = 23  Max. abs. change = 0.00307  Deviance  = 2211.73                                                                                  
Iter = 24  Max. abs. change = 0.00277  Deviance  = 2211.67                                                                                  
Iter = 25  Max. abs. change = 0.00250  Deviance  = 2211.61                                                                                  
Iter = 26  Max. abs. change = 0.00226  Deviance  = 2211.57                                                                                  
Iter = 27  Max. abs. change = 0.00205  Deviance  = 2211.52                                                                                  
Iter = 28  Max. abs. change = 0.00186  Deviance  = 2211.48                                                                                  
Iter = 29  Max. abs. change = 0.00169  Deviance  = 2211.45                                                                                  
Iter = 30  Max. abs. change = 0.00153  Deviance  = 2211.42                                                                                  
Iter = 31  Max. abs. change = 0.00140  Deviance  = 2211.39                                                                                  
Iter = 32  Max. abs. change = 0.00127  Deviance  = 2211.36                                                                                  
Iter = 33  Max. abs. change = 0.00116  Deviance  = 2211.34                                                                                  
Iter = 34  Max. abs. change = 0.00106  Deviance  = 2211.32                                                                                  
Iter = 35  Max. abs. change = 0.00097  Deviance  = 2211.30                                                                                  
Iter = 36  Max. abs. change = 0.00089  Deviance  = 2211.29                                                                                  
Iter = 37  Max. abs. change = 0.00082  Deviance  = 2211.27                                                                                  
Iter = 38  Max. abs. change = 0.00075  Deviance  = 2211.26                                                                                  
Iter = 39  Max. abs. change = 0.00069  Deviance  = 2211.24                                                                                  
Iter = 40  Max. abs. change = 0.00063  Deviance  = 2211.23                                                                                  
Iter = 41  Max. abs. change = 0.00058  Deviance  = 2211.22                                                                                  
Iter = 42  Max. abs. change = 0.00055  Deviance  = 2211.21                                                                                  
Iter = 43  Max. abs. change = 0.00053  Deviance  = 2211.20                                                                                  
Iter = 44  Max. abs. change = 0.00051  Deviance  = 2211.19                                                                                  
Iter = 45  Max. abs. change = 0.00049  Deviance  = 2211.18                                                                                  
Iter = 46  Max. abs. change = 0.00047  Deviance  = 2211.18                                                                                  
Iter = 47  Max. abs. change = 0.00045  Deviance  = 2211.17                                                                                  
Iter = 48  Max. abs. change = 0.00043  Deviance  = 2211.16                                                                                  
Iter = 49  Max. abs. change = 0.00042  Deviance  = 2211.16                                                                                  
Iter = 50  Max. abs. change = 0.00040  Deviance  = 2211.15                                                                                  
Iter = 51  Max. abs. change = 0.00039  Deviance  = 2211.15                                                                                  
Iter = 52  Max. abs. change = 0.00037  Deviance  = 2211.14                                                                                  
Iter = 53  Max. abs. change = 0.00036  Deviance  = 2211.14                                                                                  
Iter = 54  Max. abs. change = 0.00035  Deviance  = 2211.13                                                                                  
Iter = 55  Max. abs. change = 0.00034  Deviance  = 2211.13                                                                                  
Iter = 56  Max. abs. change = 0.00032  Deviance  = 2211.12                                                                                  
Iter = 57  Max. abs. change = 0.00031  Deviance  = 2211.12                                                                                  
Iter = 58  Max. abs. change = 0.00030  Deviance  = 2211.12                                                                                  
Iter = 59  Max. abs. change = 0.00029  Deviance  = 2211.11                                                                                  
Iter = 60  Max. abs. change = 0.00029  Deviance  = 2211.11                                                                                  
Iter = 61  Max. abs. change = 0.00028  Deviance  = 2211.11                                                                                  
Iter = 62  Max. abs. change = 0.00027  Deviance  = 2211.11                                                                                  
Iter = 63  Max. abs. change = 0.00026  Deviance  = 2211.10                                                                                  
Iter = 64  Max. abs. change = 0.00025  Deviance  = 2211.10                                                                                  
Iter = 65  Max. abs. change = 0.00025  Deviance  = 2211.10                                                                                  
Iter = 66  Max. abs. change = 0.00024  Deviance  = 2211.10                                                                                  
Iter = 67  Max. abs. change = 0.00023  Deviance  = 2211.10                                                                                  
Iter = 68  Max. abs. change = 0.00022  Deviance  = 2211.09                                                                                  
Iter = 69  Max. abs. change = 0.00022  Deviance  = 2211.09                                                                                  
Iter = 70  Max. abs. change = 0.00021  Deviance  = 2211.09                                                                                  
Iter = 71  Max. abs. change = 0.00021  Deviance  = 2211.09                                                                                  
Iter = 72  Max. abs. change = 0.00020  Deviance  = 2211.09                                                                                  
Iter = 73  Max. abs. change = 0.00020  Deviance  = 2211.09                                                                                  
Iter = 74  Max. abs. change = 0.00019  Deviance  = 2211.09                                                                                  
Iter = 75  Max. abs. change = 0.00019  Deviance  = 2211.09                                                                                  
Iter = 76  Max. abs. change = 0.00018  Deviance  = 2211.08                                                                                  
Iter = 77  Max. abs. change = 0.00018  Deviance  = 2211.08                                                                                  
Iter = 78  Max. abs. change = 0.00017  Deviance  = 2211.08                                                                                  
Iter = 79  Max. abs. change = 0.00017  Deviance  = 2211.08                                                                                  
Iter = 80  Max. abs. change = 0.00016  Deviance  = 2211.08                                                                                  
Iter = 81  Max. abs. change = 0.00016  Deviance  = 2211.08                                                                                  
Iter = 82  Max. abs. change = 0.00016  Deviance  = 2211.08                                                                                  
Iter = 83  Max. abs. change = 0.00015  Deviance  = 2211.08                                                                                  
Iter = 84  Max. abs. change = 0.00015  Deviance  = 2211.08                                                                                  
Iter = 85  Max. abs. change = 0.00014  Deviance  = 2211.08                                                                                  
Iter = 86  Max. abs. change = 0.00014  Deviance  = 2211.08                                                                                  
Iter = 87  Max. abs. change = 0.00014  Deviance  = 2211.07                                                                                  
Iter = 88  Max. abs. change = 0.00013  Deviance  = 2211.07                                                                                  
Iter = 89  Max. abs. change = 0.00013  Deviance  = 2211.07                                                                                  
Iter = 90  Max. abs. change = 0.00013  Deviance  = 2211.07                                                                                  
Iter = 91  Max. abs. change = 0.00013  Deviance  = 2211.07                                                                                  
Iter = 92  Max. abs. change = 0.00012  Deviance  = 2211.07                                                                                  
Iter = 93  Max. abs. change = 0.00012  Deviance  = 2211.07                                                                                  
Iter = 94  Max. abs. change = 0.00012  Deviance  = 2211.07                                                                                  
Iter = 95  Max. abs. change = 0.00011  Deviance  = 2211.07                                                                                  
Iter = 96  Max. abs. change = 0.00011  Deviance  = 2211.07                                                                                  
Iter = 97  Max. abs. change = 0.00011  Deviance  = 2211.07                                                                                  
Iter = 98  Max. abs. change = 0.00011  Deviance  = 2211.07                                                                                  
Iter = 99  Max. abs. change = 0.00011  Deviance  = 2211.07                                                                                  
Iter = 100  Max. abs. change = 0.00010  Deviance  = 2211.07                                                                                  
Iter = 101  Max. abs. change = 0.00010  Deviance  = 2211.07                                                                                  
Iter = 102  Max. abs. change = 0.00010  Deviance  = 2211.07                                                                                  
extract(fit.obj, "M2")
#>         M2         df    p.value     RMSEA2 
#> 12.6310734 16.0000000  0.6995167  0.0000000 
# }