Summary method for CDM objects

# S3 method for class 'CDM'
summary(object, ...)

Arguments

object

An object of class "CDM" returned by the CDM function.

...

Additional arguments.

Value

A list containing summary statistics of the CDM.

Examples

set.seed(123)
library(Qval)

Q <- sim.Q(3, 20)
IQ <- list(
  P0 = runif(20, 0.0, 0.2),
  P1 = runif(20, 0.8, 1.0)
)
data.obj <- sim.data(Q = Q, N = 500, IQ = IQ,
                     model = "GDINA", distribute = "horder")
#> distribute =  horder 
#>  model =  GDINA 
#>  number of attributes:  3 
#>  number of items:  20 
#>  num of examinees:  500 
#>  average of P0 =  0.083 
#>  average of P1 =  0.894 
#> theta_mean =  -0.055 , theta_sd = 0.996 
#>  a =  1.5 1.5 1.5 
#>  b =  -1.5 1.5 0 
CDM.obj <- CDM(data.obj$dat, Q, model = "GDINA", 
               method = "EM", maxitr = 2000, verbose = 1)
#> 
Iter = 1  Max. abs. change = 0.57951  Deviance  = 10238.69                                                                                  
Iter = 2  Max. abs. change = 0.09509  Deviance  = 8501.84                                                                                  
Iter = 3  Max. abs. change = 0.03995  Deviance  = 8478.24                                                                                  
Iter = 4  Max. abs. change = 0.01792  Deviance  = 8477.13                                                                                  
Iter = 5  Max. abs. change = 0.02604  Deviance  = 8477.02                                                                                  
Iter = 6  Max. abs. change = 0.01142  Deviance  = 8476.97                                                                                  
Iter = 7  Max. abs. change = 0.01740  Deviance  = 8476.96                                                                                  
Iter = 8  Max. abs. change = 0.00686  Deviance  = 8476.95                                                                                  
Iter = 9  Max. abs. change = 0.00466  Deviance  = 8476.94                                                                                  
Iter = 10  Max. abs. change = 0.00253  Deviance  = 8476.94                                                                                  
Iter = 11  Max. abs. change = 0.00030  Deviance  = 8476.94                                                                                  
Iter = 12  Max. abs. change = 0.00014  Deviance  = 8476.94                                                                                  
Iter = 13  Max. abs. change = 0.00016  Deviance  = 8476.94                                                                                  
Iter = 14  Max. abs. change = 0.00760  Deviance  = 8476.94                                                                                  
Iter = 15  Max. abs. change = 0.00246  Deviance  = 8476.94                                                                                  
Iter = 16  Max. abs. change = 0.00502  Deviance  = 8476.94                                                                                  
Iter = 17  Max. abs. change = 0.00017  Deviance  = 8476.94                                                                                  
Iter = 18  Max. abs. change = 0.00109  Deviance  = 8476.94                                                                                  
Iter = 19  Max. abs. change = 0.00004  Deviance  = 8476.94                                                                                  
summary(CDM.obj)
#> Call:
#> CDM(Y = data.obj$dat, Q = Q, model = "GDINA", 
#>     method = "EM", maxitr = 2000, 
#>     verbose = 1)
#> 
#> ==============================================
#>  Number of items       = 20 
#>  Number of attributes  = 3 
#>  Number of individuals = 500 
#> 
#> Model Fit:
#> Deviance     npar      AIC      BIC 
#> 8476.939   87.000 8650.939 9017.610 
#> 
#> Distribution of Alpha Patterns:
#>        000  001  010  011   100   101   110   111
#> freq    97   20  120  145     4    13    32    69
#> prop 0.194 0.04 0.24 0.29 0.008 0.026 0.064 0.138