Caculate vector recovery ratio (VRR)

zVRR(Q.true, Q.sug)

Arguments

Q.true

The true Q-matrix.

Q.sug

A The Q-matrix that has being validated.

Value

A numeric (VRR index).

Details

The VRR shows the ability of the validation method to recover q-vectors, and is determined by $$ VRR =\frac{\sum_{i=1}^{I}I(\mathbf{q}_{i}^{t} = \mathbf{q}_{i}^{s})}{I} $$ where \(\mathbf{q}_{i}^{t}\) denotes the \(\mathbf{q}\)-vector of item i in the true Q-matrix (Q.true), \(\mathbf{q}_{i}^{s}\) denotes the \(\mathbf{q}\)-vector of item i in the suggested Q-matrix(Q.sug), and \(I(\cdot)\) is the indicator function.

Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
#> rate of mis-specifications =  0.1 
#>  rate of  over-specifications =  0.07 
#>  rate of under-specifications =  0.03 
VRR <- zVRR(example.Q1, example.Q2)
print(VRR)
#> [1] 0.5666667