Caculate Q-matrix recovery rate (QRR)

zQRR(Q.true, Q.sug)

Arguments

Q.true

The true Q-matrix.

Q.sug

A The Q-matrix that has being validated.

Value

A numeric (QRR index).

Details

The Q-matrix recovery rate (QRR) provides information on overall performance, and is defned as: $$ QRR = \frac{\sum_{i=1}^{I}\sum_{k=1}^{K}I(q_{ik}^{t} = q_{ik}^{s})}{I × K} $$ where \(q_{ik}^{t}\) denotes the \(k\)th attribute of item \(i\) in the true Q-matrix (\(Q.true\)), \(q_{ik}^{s}\) denotes \(k\)th attribute of item \(i\) in the suggested Q-matrix(\(Q.sug\)), and \(I(\cdot)\) is the indicator function.

Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
#> rate of mis-specifications =  0.1 
#>  rate of  over-specifications =  0.07 
#>  rate of under-specifications =  0.03 
QRR <- zQRR(example.Q1, example.Q2)
print(QRR)
#> [1] 0.9